

PORTFOLIO SCALE VESSEL ANALYSIS COASTAL NAVIGATION PROJECT MANAGEMENT

Brandan Scully, PE, PhD

David Young, PhD, James Ross, PhD, Christina Saltus, GISP

District PDT Members

Dylan Davis (SAD), Anne Sturm (SPD), Richard Allen (SAM), Shahidul Islam (SWG)

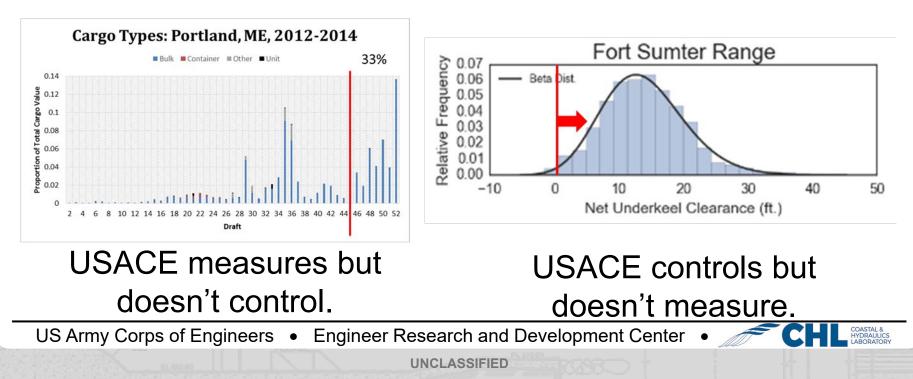
Kathy Griffin

US Army Corps of Engineers

HQ Navigation Business Line Manager

Eddie Wiggins

Technical Director



EL 379:00

BLUF

Identify methods to measure interactions between vessel traffic and infrastructure using archival AIS data to better inform and align management of coastal navigation projects with levels of use at *portfolio scale*.

Research Drivers & Goals

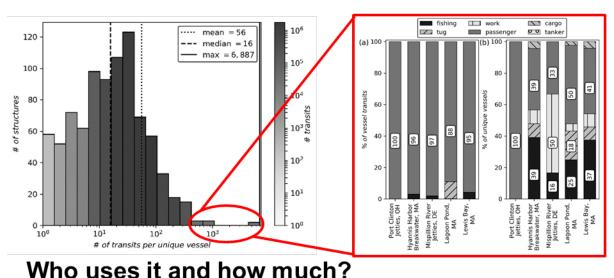
HYDRAULIC

- USACE navigation project metrics are insufficient to drive gains in performance of the coastal navigation system.
 - Cargo throughput is beyond USACE control.
 - Channel controlling depth is under-informative.
- Infrastructure maintenance is assumed but rarely demonstrated to improve vessel performance.
 - USACE lacks the ability to measure vessel performance directly.
 - Evidence that investments benefit users is lacking.
- GOALS:
 - Augment subjective, qualitative navigation structure performance metric (OCA), and proxy project maintenance prioritization metrics (tonnage, value).
 - Cast structure performance in terms of vessel activity for navigation structures.
 - Formulate management metrics at "portfolio scale". ٠

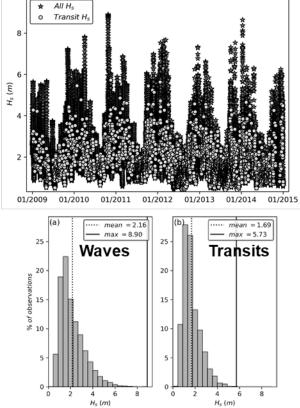
US Army Corps of Engineers

Engineer Research and Development Center

Relative Risk Ranking Matrix


Condition Classification (Increasing Adequacy)

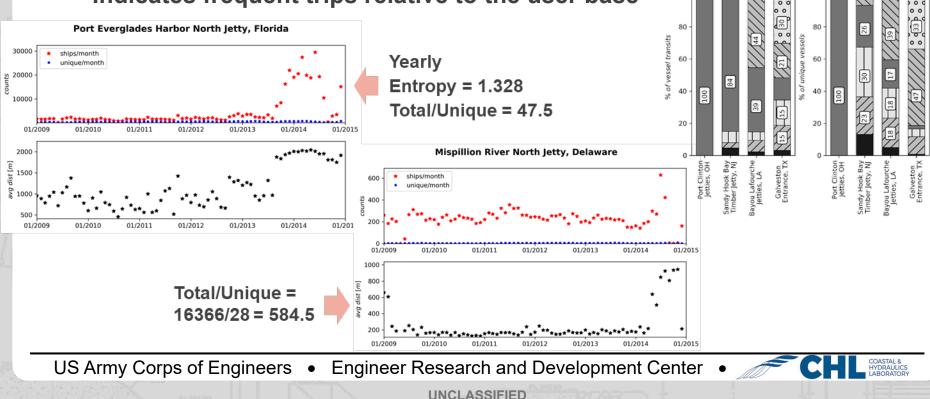
UNCLASSIFIED


Given 10M vessel transits, what can be said about traffic near 1k coastal structures?

- Measurable ∩ Meaningful
 - Number and types of vessels
 - Number of transits per vessel & type
 - Timing of transits, seasonality
 - Proximity to structure

Use trends

Grays Harbor N. Jetty


Under what conditions?

US Army Corps of Engineers • Engineer Research and Development Center •

HYDRAULICS

How do we find interesting structures?

- Information Entropy
 - Entropy = $\sum [P(k) * In(P(k))]$
 - Maximum entropy: Even distribution across categories
 - Minimum entropy: Distribution focused in fewer categories
- Average trip per user = Total/Unique
 - Indicates frequent trips relative to the user base

SS cargo

tanker

 $E_{to} = 1.54$

 $E_{to} = 1.48$

1.23

work

Ett =

passenger

100

0.00

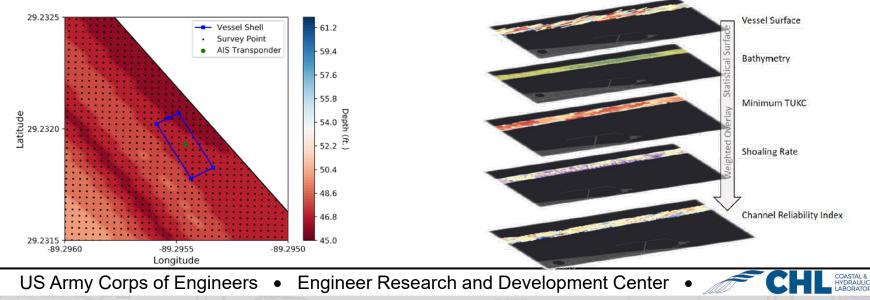
tua

 $E_{tt} = 1.19$

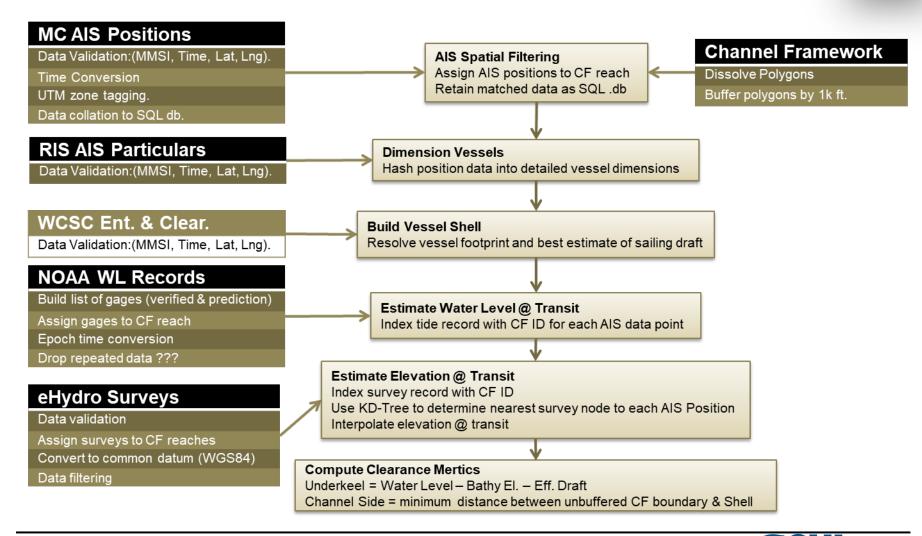
0.61

 $E_{tt} = 0.00$

100

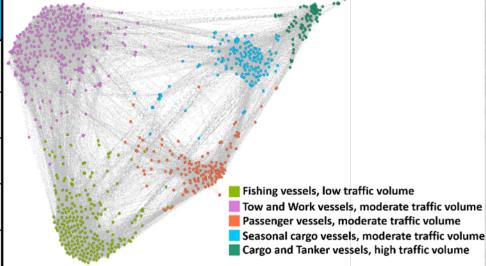

Vessel Clearance Analysis

- AIS provides enough information to resolve vessel footprint
 - Augmenting AIS can resolve vessel sail draft
- eHydro provides bathy elevation
- CSAT provides shoaling rate
- NOAA gages provide water level
- Channel Framework links input


 Enables characterization of navigation channels in terms of 3D vessel clearance while navigating, not channel depth.

UNCLASSIFIED

Vessel Clearance Analysis


US Army Corps of Engineers • Engineer Research and Development Center •

Align measurement with management

- Identify metrics relevant to desired objective
- Score projects
- Partition projects into management groups
- Develop management tactics to advance objective

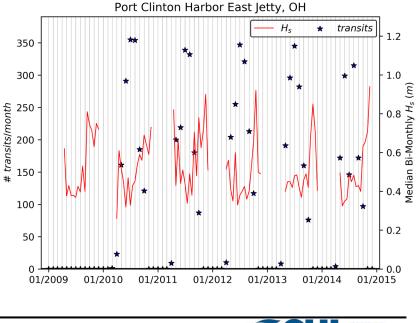
	Level of Functionality	TABLE F-10 Coastal Navigation Structures Functional Condition Rating (FCR) Table
	Full A	No notable impact, project performing as designed.
	Sufficient – B	(1) Infrequent or periodic limitations on navigability, or (2) minor/periodic increases in dredge quantity
	Reduced C	(1) Less than 10% of the time, design vessels cannot navigate or operate within authorized limits; (2) O&M dredging requirements in the Entrance and Bar Channel have increased less than 10%, as compared to the long-term average annual rate.
	Severely Degraded D	(1) 10-20% of the time, design vessels cannot navigate or operate within authorized limits; (2) O&M dredging requirements in the Entrance and Bar Channel have increased 10-20%, as compared to the long-term average annual rate.
	Completely Degraded F	(1)-20-40% of the time, design vessels cannot navigate or operate within authorized limits; (2) O&M dredging requirements in the Entrance and Bar Channel have 20-40%, as compared to the long-term average annual rate.

Budget EC Structure Functionality Guidance: -No way to measure navigability

-Shoaling may be unrelated to structures and does not categorically impede navigation

US Army Corps of Engineers • Engineer Research and Development Center •

Summary


In 2019:

- Identified vessel performance metrics, used them to describe and group infrastructure for management purposes
- Developed a portfolio-scale framework for estimating clearances (underkeel, channel side) of archival vessels in transit data.
- TN: Assessing Jetty Effectiveness via Statistical Analysis of AIS Data
- JA: Mining Marine Vessel AIS Data to Inform Coastal Structure Management (ASCE Waterways, accepted 7/3)

Next Steps:

- Need to refine how vessel clearance measurements can be meaningfully communicated & formulated for management.
- Need input from field to further develop structure load/resistance metrics:
 - Incident Hs/Design Hs
 - Repair/Dredge \$ index
 - Traffic count-wave loading similarity

US Army Corps of Engineers • Engineer Research and Development Center •

